

## June 2011 Further Pure Mathematics FP3 6669 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                          | Marks   |                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|
| 1.                 | $\frac{dy}{dx} = 6x^2$ and so surface area $= 2\pi \int 2x^3 \sqrt{(1+(6x^2)^2)} dx$                                                                                            | B1      |                 |
|                    | $=4\pi \left[\frac{2}{3\times 36\times 4}(1+36x^4)^{\frac{3}{2}}\right]$                                                                                                        | M1 A1   |                 |
|                    | Use limits 2 and 0 to give $\frac{4\pi}{216} [13860.016 - 1] = 806$ (to 3 sf)                                                                                                   | DM1 A1  |                 |
|                    |                                                                                                                                                                                 |         | 5               |
|                    | Notes:                                                                                                                                                                          |         |                 |
|                    | Both bits CAO but condone lack of $2\pi$                                                                                                                                        |         |                 |
| 1M1                | Integrating $\int \left( y \sqrt{1 + \left( \text{their } \frac{dy}{dx} \right)^2} \right) dx$ , getting $k(1 + 36x^4)^{\frac{3}{2}}$ , condone lack of $2\pi$                  |         |                 |
| 1A1                | If they use a substitution it must be a complete method. CAO                                                                                                                    |         |                 |
| 2DM1               | Correct use of 2 and 0 as limits CAO                                                                                                                                            |         |                 |
| 2.                 |                                                                                                                                                                                 |         |                 |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{\sqrt{(1-x^2)}} + \arcsin x$                                                                                                        | M1 A1   |                 |
| (ii)               | At given value derivative $=\frac{1}{\sqrt{3}} + \frac{\pi}{6} = \frac{2\sqrt{3} + \pi}{6}$                                                                                     | B1      | (2)             |
| (J-)               | - 22                                                                                                                                                                            | 1M1 A1  | (1)             |
| <b>(b)</b>         | $\frac{dy}{dx} = \frac{6e^{2x}}{1 + 9e^{4x}}$                                                                                                                                   | IMII AI |                 |
|                    | $dx 	 1+9e^{4x}$ $= \frac{6}{e^{-2x}+9e^{2x}}$ $= \frac{3}{\frac{5}{2}(e^{2x}+e^{-2x})+\frac{4}{2}(e^{2x}-e^{-2x})}$ $\therefore \frac{dy}{dx} = \frac{3}{5\cosh 2x+4\sinh 2x}$ | 2M1     |                 |
|                    | $=\frac{3}{2}$                                                                                                                                                                  | 3M1     |                 |
|                    | $\frac{5}{2}(e^{2x}+e^{-2x})+\frac{4}{2}(e^{2x}-e^{-2x})$                                                                                                                       |         |                 |
|                    | $\therefore \frac{dy}{dt} = \frac{3}{5 + 1 \cdot 2 \cdot 4 \cdot 1 \cdot 2}$                                                                                                    | A1 cso  |                 |
|                    | $dx = 5\cosh 2x + 4\sinh 2x$                                                                                                                                                    |         | (5)<br><b>8</b> |
|                    | Notes:                                                                                                                                                                          |         |                 |
| (a) M1             | Differentiating getting an arcsinx term and a $\frac{1}{\sqrt{1 \pm x^2}}$ term                                                                                                 |         |                 |
| <b>A1</b>          | CAO CAO any correct form                                                                                                                                                        |         |                 |

1



| Question   |                                                                                                                                                                                                          | Marks           |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Number     | Scheme                                                                                                                                                                                                   | Marks           |
| (b) 1M1    | Of correct form $\frac{ae^{2x}}{1 \pm be^{4x}}$                                                                                                                                                          |                 |
|            | CAU                                                                                                                                                                                                      |                 |
| 2M1        | Getting from expression in $e^{4x}$ to $e^{2x}$ and $e^{-2x}$ only                                                                                                                                       |                 |
| 3M1<br>2A1 | Using sinh2x and cosh2x in terms of $(e^{2x} + e^{-2x})$ and $(e^{2x} - e^{-2x})$<br>CSO – answer given                                                                                                  |                 |
| 3.         | 1 1 1                                                                                                                                                                                                    |                 |
| (a)        | $x^2 - 10x + 34 = (x - 5)^2 + 9$ so $\frac{1}{x^2 - 10x + 34} = \frac{1}{(x - 5)^2 + 9} = \frac{1}{u^2 + 9}$                                                                                             | B1              |
|            | (mark can be earned in either part (a) or (b))                                                                                                                                                           |                 |
|            | $I = \int \frac{1}{u^2 + 9} du = \left[ \frac{1}{3} \arctan\left(\frac{u}{3}\right) \right] \qquad I = \int \frac{1}{(x - 5)^2 + 9} du = \left[ \frac{1}{3} \arctan\left(\frac{x - 5}{3}\right) \right]$ | M1 A1           |
|            | Uses limits 3 and 0 to give $\frac{\pi}{12}$ Uses limits 8 and 5 to give $\frac{\pi}{12}$                                                                                                                | DM1 A1          |
|            | 12                                                                                                                                                                                                       | (5)             |
| (b) Alt 1  | $I = \ln\left(\left(\frac{x-5}{3}\right) + \sqrt{\left(\frac{x-5}{3}\right)^2 + 1}\right) \text{ or } I = \ln\left(\frac{x-5 + \sqrt{\left(x-5\right)^2 + 9}}{3}\right)$                                 | M1 A1           |
|            | or $I = \ln\left((x-5) + \sqrt{(x-5)^2 + 9}\right)$                                                                                                                                                      |                 |
|            | Uses limits 5 and 8 to give $\ln(1+\sqrt{2})$ .                                                                                                                                                          | DM1 A1          |
|            |                                                                                                                                                                                                          | (4)<br><b>9</b> |
| (b) Alt 2  | Uses $u = x-5$ to get $I = \int \frac{1}{\sqrt{u^2 + 9}} du = \left[ \operatorname{arsinh}\left(\frac{u}{3}\right) \right] = \ln\left\{ u + \sqrt{u^2 + 9} \right\}$                                     | M1 A1           |
|            | Uses limits 3 and 0 and ln expression to give $ln(1+\sqrt{2})$ .                                                                                                                                         | DM1 A1          |
| (b) Alt 3  | Use substitution $x - 5 = 3 \tan \theta$ , $\frac{dx}{d\theta} = 3 \sec^2 \theta$ and so $I = \int \sec \theta d\theta = \ln(\sec \theta + \tan \theta)$                                                 | M1 A1 (4)       |
|            | $I = \int \sec \theta d\theta = \ln(\sec \theta + \tan \theta)$                                                                                                                                          |                 |
|            | Uses limits 0 and $\frac{\pi}{4}$ to get $\ln(1+\sqrt{2})$ .                                                                                                                                             | DM1 A1          |
|            | Notes:                                                                                                                                                                                                   | (4)             |
| 1 1        | CAO allow recovery in (b)                                                                                                                                                                                |                 |
|            | Integrating getting k arctan term CAO                                                                                                                                                                    |                 |
|            | Correctly using limits.                                                                                                                                                                                  |                 |
| 2A1        | CAO                                                                                                                                                                                                      |                 |



|                    | advancing le                                                                                                                                                                                                             | earning, chan | ging li |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|
| Question<br>Number | Scheme                                                                                                                                                                                                                   | Marks         | ;       |
| 1A1<br>2DM1        | Integrating to get a ln or hyperbolic term CAO Correctly using limits. CAO                                                                                                                                               |               |         |
|                    | $I_{n} = \left[\frac{x^{3}}{3} (\ln x)^{n}\right] - \int \frac{x^{3}}{3} \times \frac{n(\ln x)^{n-1}}{x} dx$                                                                                                             | M1 A1         |         |
|                    | $= \left[\frac{x^3}{3}(\ln x)^n\right]_1^e - \int_1^e \frac{nx^2(\ln x)^{n-1}}{3}dx$                                                                                                                                     | DM1           |         |
|                    | $\therefore I_n = \frac{e^3}{3} - \frac{n}{3} I_{n-1} \qquad *$                                                                                                                                                          | A1cso         | (4)     |
|                    |                                                                                                                                                                                                                          |               | (4)     |
| <b>(b)</b>         | $I_0 = \int_{1}^{e} x^2 dx = \left[ \frac{x^3}{3} \right]_{1}^{e} = \frac{e^3}{3} - \frac{1}{3} \text{ or } I_1 = \frac{e^3}{3} - \frac{1}{3} \left( \frac{e^3}{3} - \frac{1}{3} \right) = \frac{2e^3}{9} + \frac{1}{9}$ | M1 A1         |         |
|                    | $I_1 = \frac{e^3}{3} - \frac{1}{3}I_0$ , $I_2 = \frac{e^3}{3} - \frac{2}{3}I_1$ and $I_3 = \frac{e^3}{3} - \frac{3}{3}I_2$ so $I_3 = \frac{4e^3}{27} + \frac{2}{27}$                                                     | M1 A1         | (4)     |
|                    | N                                                                                                                                                                                                                        |               | 8       |
| 1A1<br>2DM1        | Notes: Using integration by parts, integrating $x^2$ , differentiating $(\ln x)^n$ CAO Correctly using limits 1 and e CSO answer given                                                                                   |               |         |
| (b)1M1             | Evaluating $I_0$ or $I_1$ by an attempt to integrate something                                                                                                                                                           |               |         |
|                    | CAO  Finding I (also probably I and I ) If 'n' a left in MO                                                                                                                                                              |               |         |
| 2M1<br>2A1         | Finding $I_3$ (also probably $I_1$ and $I_2$ ) If 'n's left in M0 $I_3$ CAO                                                                                                                                              |               |         |
|                    |                                                                                                                                                                                                                          |               |         |
|                    |                                                                                                                                                                                                                          |               |         |
|                    |                                                                                                                                                                                                                          |               |         |
|                    |                                                                                                                                                                                                                          |               |         |
|                    |                                                                                                                                                                                                                          |               |         |
|                    |                                                                                                                                                                                                                          |               |         |



| ·                                                  | advancing learning, changing liv                                                                                                                                                                                                                                                                                                                                                                             |        |                 |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|
| Question<br>Number                                 | Scheme                                                                                                                                                                                                                                                                                                                                                                                                       | Marks  |                 |
| 5. (a)                                             | Graph of $y = 3\sinh 2x$                                                                                                                                                                                                                                                                                                                                                                                     | B1     |                 |
|                                                    | Shape of $-e^{2x}$ graph                                                                                                                                                                                                                                                                                                                                                                                     | B1     |                 |
|                                                    | Asymptote: $y = 13$                                                                                                                                                                                                                                                                                                                                                                                          | B1     |                 |
|                                                    | Value 10 on y axis and value 0.7 or $\frac{1}{2} \ln \left( \frac{13}{3} \right)$ on x axis                                                                                                                                                                                                                                                                                                                  | B1     | (4)             |
|                                                    | 3 (2727) 12 2 27 2 27 2 27 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                             | M1 A1  | ( ' )           |
| <b>(b)</b>                                         | Use definition $\frac{3}{2}(e^{2x} - e^{-2x}) = 13 - 3e^{2x} \rightarrow 9e^{4x} - 26e^{2x} - 3 = 0$ to form quadratic                                                                                                                                                                                                                                                                                       | DM1 A1 |                 |
|                                                    | $\therefore e^{2x} = -\frac{1}{9} \text{ or } 3$ $\therefore x = \frac{1}{2} \ln(3)$                                                                                                                                                                                                                                                                                                                         | B1     |                 |
|                                                    | $\therefore x = \frac{1}{2}\ln(3)$                                                                                                                                                                                                                                                                                                                                                                           | Б1     | (5)             |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                              |        | (5)<br><b>9</b> |
| 2B1<br>3B1<br>4B1<br>(b) 1M1<br>1A1<br>2DM1<br>2A1 | Notes:<br>$y = 3\sinh 2x$ first and third quadrant.<br>Shape of $y = -e^{2x}$ correct intersects on positive axes.<br>Equation of asymptote, $y = 13$ , given. Penlise 'extra' asymptotes here Intercepts correct both<br>Getting a three terms quadratic in $e^{2x}$<br>Correct three term quadratic<br>Solving for $e^{2x}$<br>CAO for $e^{2x}$ condone omission of negative value.<br>CAO one answer only |        |                 |



|                                                             |                                                                                                                                                                                                                                                                                                                                   | earning, chang           | 56  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----|
| Question<br>Number                                          | Scheme                                                                                                                                                                                                                                                                                                                            | Marks                    |     |
| 6. (a)                                                      | $\mathbf{n} = (2\mathbf{j} - \mathbf{k}) \times (3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 6\mathbf{i} - 3\mathbf{j} - 6\mathbf{k}$ o.a.e. (e.g. $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ )                                                                                                                                      | M1 A1                    | (2) |
| (b)                                                         | Line <i>l</i> has direction $2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ Angle between line <i>l</i> and normal is given by $(\cos \beta \text{ or } \sin \alpha) = \frac{4+2+2}{\sqrt{9}\sqrt{9}} = \frac{8}{9}$ $\alpha = 90 - \beta = 63$ degrees to nearest degree.                                                               | B1<br>M1 A1ft<br>A1 awrt | (4) |
| (c) Alt 1                                                   | Plane <i>P</i> has equation $\mathbf{r}.(2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = 1$<br>Perpendicular distance is $\frac{1 - (-7)}{\sqrt{9}} = \frac{8}{3}$                                                                                                                                                                      | M1 A1<br>M1 A1           | (4) |
| (c) Alt 2                                                   | Parallel plane through A has equation $\mathbf{r} \cdot \frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{3} = \frac{-7}{3}$ Plane P has equation $\mathbf{r} \cdot \frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{3} = \frac{1}{3}$ So O lies between the two and perpendicular distance is $\frac{1}{3} + \frac{7}{3} = \frac{8}{3}$ | M1 A1<br>M1              | 10  |
| (c) Alt 3                                                   | Distance A to $(3,1,2) = \sqrt{2^2 + 2^2 + 1^2} = 3$<br>Perpendicular distance is '3' sin $\alpha = 3 \times \frac{8}{9} = \frac{8}{3}$                                                                                                                                                                                           | M1A1<br>M1A1             | (4) |
| (c) Alt 4                                                   | Finding Cartesian equation of plane P: $2x - y - 2z - 1 = 0$<br>$d = \frac{\left  n_1 \alpha + n_2 \beta + n_3 \gamma + d \right }{\sqrt{n_1^2 + n_2^2 + n_3^2}} = \frac{\left  2(1) - 1(3) - 2(3) - 1 \right }{\sqrt{2^2 + 1^2 + 2^2}} = \frac{8}{3}$                                                                            | M1 A1<br>M1A1            | (4) |
| A1<br>(b) B1<br>M1<br>1A1ft<br>2A1<br>(c) 1M1<br>1A1<br>2M1 | Angle between ' $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ ' and $2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ , formula of correct form                                                                                                                                                                                                 |                          |     |
|                                                             |                                                                                                                                                                                                                                                                                                                                   |                          |     |



| Question          | Scheme                                                                                                                                                                                                                                                                                                                                                   | Marks | 6        |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| Number 7.         |                                                                                                                                                                                                                                                                                                                                                          |       |          |
| (a)               | Det $\mathbf{M} = k(0-2) + 1(1+3) + 1(-2-0) = -2k + 4 - 2 = 2 - 2k$                                                                                                                                                                                                                                                                                      | M1 A1 | (2)      |
| (b)               | $\mathbf{M}^{T} = \begin{pmatrix} k & 1 & 3 \\ -1 & 0 & -2 \\ 1 & -1 & 1 \end{pmatrix} \text{ so cofactors} = \begin{pmatrix} -2 & -1 & 1 \\ -4 & k-3 & k+1 \\ -2 & 2k-3 & 1 \end{pmatrix}$ (-1 A mark for each term wrong)                                                                                                                              | M1    | (-)      |
|                   | $\mathbf{M}^{-1} = \frac{1}{2 - 2k} \begin{pmatrix} -2 & -1 & 1 \\ -4 & k - 3 & k + 1 \\ -2 & 2k - 3 & 1 \end{pmatrix}$                                                                                                                                                                                                                                  | M1 A3 | (5)      |
| (c)               | Let $(x, y, z)$ be on $l_1$ . Equation of $l_2$ can be written as $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$ .                                                                                                                                       | B1    |          |
|                   | Use $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ with $k = 2$ . i.e. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{-2} \begin{pmatrix} -2 & -1 & 1 \\ -4 & -1 & 3 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4+4\lambda \\ 1+\lambda \\ 7+3\lambda \end{pmatrix}$                 | M1    |          |
|                   | $ \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{pmatrix} 3\lambda + 1 \\ 4\lambda - 2 \\ 2\lambda \end{pmatrix} $                                                                                                                                                                                                                                   | M1 A1 |          |
|                   | and so $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0$ where $\mathbf{a} = \mathbf{i} - 2\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ or equivalent or $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ where $\mathbf{a} = \mathbf{i} - 2\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ or equivalent | B1ft  | (5<br>1: |
|                   | Notes:                                                                                                                                                                                                                                                                                                                                                   |       |          |
| ` '               | Finding determinant at least one component correct. CAO                                                                                                                                                                                                                                                                                                  |       |          |
| 2M1<br>1A1<br>2A1 | Finding matrix of cofactors or its transpose Finding inverse matrix, 1/(det) cofactors + transpose At least seven terms correct (so at most 2 incorrect) condone missing det At least eight terms correct (so at most 1 incorrect) condone missing det All nine terms correct, condone missing det                                                       |       |          |
| 1M1<br>2M1        | Equation of $l_2$ Using inverse transformation matrix correctly Finding general point in terms of $\lambda$ . CAO for general point in terms of one parameter                                                                                                                                                                                            |       |          |
| 2B1               | ft for vector equation of their $l_1$                                                                                                                                                                                                                                                                                                                    |       |          |



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks                                 |            |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|
| 8.                 | Uses $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b \cosh \theta}{a \sinh \theta}$ or $\frac{2x}{a^2} - \frac{2yy'}{b^2} = 0 \rightarrow y' = \frac{xb^2}{ya^2} = \frac{b \cosh \theta}{a \sinh \theta}$<br>So $y - b \sinh \theta = \frac{b \cosh \theta}{a \sinh \theta} (x - a \cosh \theta)$                                                                                                                                                                                                   | M1 A1                                 |            |
|                    | $\therefore ab(\cosh^2 \theta - \sinh^2 \theta) = xb \cosh \theta - ya \sinh \theta \text{ and as } (\cosh^2 \theta - \sinh^2 \theta) = 1$ $xb \cosh \theta - ya \sinh \theta = ab  *$                                                                                                                                                                                                                                                                                                                                       | Alcso                                 | (4)        |
| <b>(b)</b>         | P is the point $(\frac{a}{\cosh \theta}, 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1 A1                                 | (2)        |
| (c)                | $l_2$ has equation $x = a$ and meets $l_1$ at $Q(a, \frac{b(\cosh \theta - 1)}{\sinh \theta})$                                                                                                                                                                                                                                                                                                                                                                                                                               | M1 A1                                 | (2)        |
| (d) Alt 1          | The mid point of $PQ$ is given by $X = \frac{a(\cosh \theta + 1)}{2\cosh \theta}$ , $Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$ $4Y^2 + b^2 = b^2 \left(\frac{\cosh^2 \theta + 1 - 2\cosh \theta + \sinh^2 \theta}{\sinh^2 \theta}\right)$                                                                                                                                                                                                                                                                               | 1M1 A1ft<br>2M1                       |            |
|                    | $=b^{2}\left(\frac{2\cosh^{2}\theta - 2\cosh\theta}{\sinh^{2}\theta}\right)$ $X(4Y^{2} + b^{2}) = ab^{2}\left(\frac{(\cosh\theta + 1)(\cosh\theta - 1)2\cosh\theta}{2\cosh\theta\sinh^{2}\theta}\right)$ Simplify fraction by using $\cosh^{2}\theta - \sinh^{2}\theta = 1$ to give $x(4y^{2} + b^{2}) = ab^{2}$ *                                                                                                                                                                                                           | 3M1<br>4M1<br>A1cso                   |            |
| (d) Alt 2          | First line of solution as before $4Y^2 + b^2 = b^2 \left( \coth^2 \theta + \operatorname{cosech}^2 \theta - 2 \coth \theta \operatorname{cosech} \theta + 1 \right)$ $= b^2 \left( 2 \coth^2 \theta - 2 \coth \theta \operatorname{cosech} \theta \right)$ $X(4Y^2 + b^2) = ab^2 \left( \coth \theta \left( \coth \theta - \operatorname{cosech} \theta \right) (1 + \operatorname{sech} \theta) \right)$ Simplify expansion by using $\coth^2 \theta - \operatorname{cosech}^2 \theta = 1$ to give $x(4y^2 + b^2) = ab^2 *$ | 1M1A1ft<br>2M1<br>3M1<br>4M1<br>A1cso | (6)<br>(6) |



| Question |                                                                                       | earning, changing |
|----------|---------------------------------------------------------------------------------------|-------------------|
| Number   | Scheme                                                                                | Marks             |
| 8.       |                                                                                       |                   |
|          | Finding gradient in terms of $\theta$ CAO                                             |                   |
|          | Finding equation of tangent                                                           |                   |
|          | CSO (answer given) look for $\pm(\cosh^2\theta - \sinh^2\theta)$                      |                   |
|          |                                                                                       |                   |
| (b)M1    | Putting $y = 0$ into their tangent                                                    |                   |
| A1ft     | P found, ft for their tangent o.e.                                                    |                   |
| ( ) 3 54 |                                                                                       |                   |
| ` '      | Putting $x = a$ into their tangent.<br>CAO Q found o.e.                               |                   |
| AI       | CAO Q found o.e.                                                                      |                   |
| (d)      | For Alt 1 and 2                                                                       |                   |
|          | Finding expressions, in terms of $\sinh \theta$ and $\cosh \theta$ but must be adding |                   |
|          | Ft on their P and Q,                                                                  |                   |
|          | Finding $4y^2 + b^2$                                                                  |                   |
|          | Simplified, factorised, maximum of 2 terms per bracket                                |                   |
|          | Finding $x(4y^2+b^2)$ , completely factorised, maximum of 2 terms per bracket         |                   |
| 2A1      | CSO                                                                                   |                   |
| (d)      | For Alts 3, 4 and 5                                                                   |                   |
| , ,      | Finding expressions, in terms of $\sinh \theta$ and $\cosh \theta$ but must be adding |                   |
| 1A1      | Ft on their P and Q                                                                   |                   |
|          | Getting $\cosh \theta$ in terms of x                                                  |                   |
|          | y or $y^2$ in terms of $\cosh \theta$ or $\sinh \theta$ in terms of x and y           |                   |
|          | Getting equation in terms of x and y only. No square roots.                           |                   |
| 2A1      | CSO                                                                                   |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       |                   |
|          |                                                                                       | 1                 |



|                    |                                                                                                                                | advancing te                              | arning, changing li |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|
| Question<br>Number | Scheme                                                                                                                         |                                           | Marks               |
| 8(d)               |                                                                                                                                |                                           |                     |
| Alt 3              | $X = \frac{a(\cosh \theta + 1)}{2\cosh \theta},  Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$                                | As main scheme                            | 1M1 A1ft            |
|                    | $ \cosh\theta = \frac{a}{2x - a} $                                                                                             | $\cosh \theta$ in terms of x              | 2M1                 |
|                    | $\sinh \theta = \frac{b(\cosh \theta - 1)}{2y} = \frac{b(a - x)}{(2x - a)y}$                                                   | $sinh \theta$ in terms of x and y         | 3M1                 |
|                    | J ( '' '') J                                                                                                                   | Using $\cosh^2\theta - \sinh^2\theta = 1$ | 4M1                 |
|                    | Simplifies to give required equation                                                                                           |                                           |                     |
|                    | $\int y^2 4x(a-x) = b^2(a-x)^2, \ x(4y^2+b^2) = ab^2$                                                                          | 7                                         | A1cso               |
|                    | $\begin{bmatrix} y + x(u - x) - b & (u - x) & x(+y + b) - ub \\ y - y - y - y - y - y - y - y - y - y$                         | ]                                         |                     |
|                    |                                                                                                                                |                                           | (6)                 |
| Alt 4              | $X = \frac{a(\cosh \theta + 1)}{2\cosh \theta},  Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$                                | As main scheme                            | 1M1 A1ft            |
|                    | $ \cosh\theta = \frac{a}{2x - a} $                                                                                             | $\cosh \theta$ in terms of x              | 2M1                 |
|                    | $y^{2} = \frac{b^{2}(\cosh\theta - 1)^{2}}{4(\cosh^{2}\theta - 1)} = \frac{b^{2}(\cosh\theta - 1)}{4(\cosh\theta + 1)}$        | $y^2$ in terms of $\cosh \theta$ only     | 3M1                 |
|                    | $y^{2} = \frac{b^{2} \left(\frac{2a - 2x}{2x - a}\right)^{2}}{4 \left(\frac{2x}{2x - a}\right)} \text{ o.e}$                   | Forms equation in x and y only            | 4M1                 |
|                    | Simplifies to give required equation                                                                                           | I                                         | A1 cso (6)          |
| Alt 5              | $X = \frac{a(\cosh \theta + 1)}{2\cosh \theta},  Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$                                | As main scheme                            | 1M1 A1ft            |
|                    | $ \cosh\theta = \frac{a}{2x - a} $                                                                                             | $\cosh \theta$ in terms of x              | 2M1                 |
|                    | $y = \left(\frac{b(\cosh\theta - 1)}{2\sinh\theta}\right) = \left(\frac{b(\cosh\theta - 1)}{2\sqrt{\cosh^2\theta - 1}}\right)$ | y in terms of $\cosh \theta$ only         | 3M1                 |
|                    | Eliminate $\sqrt{}$ and forms equation in x and y                                                                              |                                           | 4M1                 |
|                    | Simplifies to give required equation                                                                                           | •                                         | A1cso               |
|                    |                                                                                                                                |                                           |                     |